skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fu, Yuqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The InterPlanetary File System (IPFS) is a pioneering effort for Web 3.0, well-known for its decentralized infrastructure. However, some recent studies have shown that IPFS exhibits a high degree of centralization and has integrated centralized components for improved performance. While this change contradicts the core decentralized ethos of IPFS and introduces risks of hurting the data replication level and thus availability, it also opens some opportunities for better data management and cost savings through deduplication. To explore these challenges and opportunities, we start by collecting an extensive dataset of IPFS internal traffic spanning the last three years with 20+ billion messages. By analyzing this long- term trace, we obtain a more complete and accurate view of how the status of centralization evolves over an extended period. In particular, our study reveals that (1) IPFS shows a low replication level, with only 2.71% of data files replicated more than 5 times. While increasing replication enhances lookup performance and data availability, it adversely affects downloading throughput due to the overhead involved in managing peer connections, (2) there is a clear growing trend in centralization within IPFS in the last 3 years, with just 5% of peers now hosting over 80% of the content, significantly decreasing from 21.38% 3 years ago, which is largely driven by the increase of cloud nodes, (3) the default deduplication strategy of IPFS using Fixed-Size Chunking (FSC) is largely inefficient, especially with the default 256KB chunk size, showing near-zero duplication being detected. Although Content-Defined Chunking (CDC) with smaller chunks could save ∼1.8 petabytes (PB) storage space, it could impact user performance negatively. We thus design and evaluate a new metadata format that optimizes deduplication without compromising performance. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  2. FaaS (Function-as-a-Service) workloads feature unique patterns. Serverless functions are ephemeral, highly concurrent, and bursty, with an execution duration ranging from a few milliseconds to a few seconds. The workload behaviors pose new challenges to kernel scheduling. Linux CFS (Completely Fair Scheduler) is workload-oblivious and optimizes long-term fairness via proportional sharing. CFS neglects the short-term demands of CPU time from short-lived serverless functions, severely impacting the performance of short functions. Preemptive shortest job first—shortest remaining process time (SRPT)—prioritizes shorter functions in order to satisfy their short-term demands of CPU time and, therefore, serves as a best-case baseline for optimizing the turnaround time of short functions. A significant downside of approximating SRPT, however, is that longer functions might be starved. In this paper, we propose a novel application-aware kernel scheduler, ALPS (Adaptive Learning, Priority Scheduler), based on two key insights. First, approximating SRPT can largely benefit short functions but may inevitably penalize long functions. Second, CFS provides necessary infrastructure support to implement user-defined priority scheduling. To this end, we design ALPS to have a novel, decoupled scheduler frontend and backend architecture, which unifies approximate SRPT and proportional-share scheduling. ALPS’ frontend sits in the user space and approximates SRPT-inspired priority scheduling by adaptively learning from an SRPT simulation on a recent past workload. ALPS’ backend uses eBPF functions hooked to CFS to carry out the continuously learned policies sent from the frontend to inform scheduling decisions in the kernel. This design adds workload intelligence to workload-oblivious OS scheduling while retaining the desirable properties of OS schedulers. We evaluate ALPS extensively using two production FaaS workloads (Huawei and Azure), and results show that ALPS achieves a reduction of 57.2% in average function execution duration compared to CFS. 
    more » « less
  3. Serverless computing enables a new way of building and scaling cloud applications by allowing developers to write fine-grained serverless or cloud functions. The execution duration of a cloud function is typically short---ranging from a few milliseconds to hundreds of seconds. However, due to resource contentions caused by public clouds' deep consolidation, the function execution duration may get significantly prolonged and fail to accurately account for the function's true resource usage. We observe that the function duration can be highly unpredictable with huge amplification of more than 50× for an open-source FaaS platform (OpenLambda). Our experiments show that the OS scheduling policy of cloud functions' host server can have a crucial impact on performance. The default Linux scheduler, CFS (Completely Fair Scheduler), being oblivious to workloads, frequently context-switches short functions, causing a turnaround time that is much longer than their service time. We propose SFS (Smart Function Scheduler), which works entirely in the user space and carefully orchestrates existing Linux FIFO and CFS schedulers to approximate Shortest Remaining Time First (SRTF). SFS uses two-level scheduling that seamlessly combines a new FILTER policy with Linux CFS, to trade off increased duration of long functions for significant performance improvement for short functions. We implement SFS in the Linux user space and port it to OpenLambda. Evaluation results show that SFS significantly improves short functions' duration with a small impact on relatively longer functions, compared to CFS. 
    more » « less